233
Views
12
CrossRef citations to date
0
Altmetric
ADSORPTION

Removal of Diethyl Phthalate from Aqueous Media by Adsorption on Different Activated Carbons: Kinetic and Isotherm Studies

, , , &
Pages 1139-1148 | Received 15 Jul 2011, Accepted 25 Nov 2011, Published online: 16 May 2012
 

Abstract

The adsorption of diethyl phthalate (DEP) was studied on four activated carbons (ACs) with different chemical and microporous properties. The kinetic results showed that the non-linear form of the pseudo-second order kinetic model provided the best parameters. Results further showed that the DEP adsorption kinetics is favored by ACs which have a ratio of a specific microporous surface to a specific external surface that is relatively low. Besides, an increase in temperature induced an increase in the rate constant k 2 , but the adsorption capacity is temperature independent. Two models, (Langmuir (linear and non-linear forms) and Dubinin-Radushkevich-Kaganer (DRK)), were tested from experimental data. While the Langmuir model provided the best correlation on all the ACs studied. The surface occupied, calculated with the Langmuir parameter obtained by the non-linear form, evidenced the importance of the external surface and the mean pore size. The results show that the non-electrostatic interactions are predominant in the DEP adsorption and are essentially due to dispersion and hydrophobic interactions (for L27 and X17). In the case of F22 and S21 the DEP adsorption is only due to dispersion interaction. A comparison of the thermogravimetric analysis of the ACs washed and saturated shows that the DEP is totally desorbed between 300 and 500°C with a characteristic peak.

ACKNOWLEDGEMENTS

The authors wish to thank Xavier Bourrain and the Agence de l'Eau Loire Bretagne for their technical and financial support and Pica S.A. for gratuitously supplying the ACs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.