184
Views
2
CrossRef citations to date
0
Altmetric
ADSORPTION

Removal of Methyl Orange from Aqueous Solution Using Activated Papaya Leaf

Pages 2381-2390 | Received 15 Aug 2011, Accepted 27 Feb 2012, Published online: 26 Nov 2012
 

Abstract

The present investigation describes the potential of acid activated papaya leaf for the adsorption of methyl orange (MO) dye from aqueous solution. The FT-IR analysis indicated the presence of a wide variety of functional groups on the surface of the activated papaya leaf. Scanning electron microscopy and Electron dispersion X-ray techniques indicated the morphological behavior of adsorption onto the adsorbent, and weight percentage of chemical compositions available on the surface of adsorbent. The parameters, such as pH, contact time, and agitation rate giving the highest adsorption efficiency were obtained at 2, 120 min, and 150 rpm, respectively. The Langmuir model was found to represent the isotherm data better than other isotherms studied. Batch adsorption studies, based on the assumption of a pseudo first-order, Elovich Equation, and the pseudo second-order showed that the kinetic data followed closely a pseudo second-order mechanism. The adsorption capacity of activated papaya leaf for the removal of MO dye was found to be 333.34 mg/g. These showed that papaya leaf could be considered as a good and economical substitute of commercial activated carbon.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.