194
Views
17
CrossRef citations to date
0
Altmetric
LIQUID-LIQUID EXTRACTION (MATERIALS, METHODS, THEOR. CALCULATIONS)

Extraction of Copper(II) Ions from Chloride and Sulphate Solutions Using Hydrophobic Pyridyl Ketoximes

, &
Pages 1278-1284 | Received 15 Oct 2011, Accepted 23 Feb 2012, Published online: 15 Jun 2012
 

Abstract

Hydrophobic pyridyl ketoximes: 1-(2-pyridyl)tridecan-1-one oxime, 1-(3-pyridyl)tridecan-1-one oxime and 1-(4-pyridyl)tridecan-1-one oxime have been synthesized and investigated as extractants of copper(II) ions. Removal of metal ions was conducted from chloride, sulphate, and sulphate/chloride solutions. The influence of pH of aqueous solutions, copper(II), chloride, and sulphate ions and ligand concentration for extraction process were studied. Copper(II) extraction by hydrophobic 2-, 3-, and 4-pyridyl ketoximes from sulphate solutions is not possible. However, addition of chloride ions to initial sulphate media enables metal removal. The oxime of 1-(2-pyridyl)tridecane-1-one was determined as the strongest extractant of the tested oximes, but metal stripping was impossible. For the rest of the studied extractants the stripping process could be done using water or diluted mineral acid.

ACKNOWLEDGEMENTS

The work was supported by the Polish Ministry of Science and Higher Education as project number: N N209 335737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.