205
Views
8
CrossRef citations to date
0
Altmetric
ADSORPTION

Development of Experimental Results by Artificial Neural Network Model for Adsorption of Cu2+ Using Single Wall Carbon Nanotubes

, &
Pages 1490-1499 | Received 06 Mar 2012, Accepted 05 Oct 2012, Published online: 08 May 2013
 

Abstract

Removal of copper ions from aqueous solution using single wall carbon nanotubes (SWCNTs) as a function on pH was studied using batch technique. The results indicate that adsorption is strongly dependent on pH. The adsorption of Cu2+ on SWCNTs increases slowly with increasing pH value at pH < 7.0 and then the adsorption increases rapidly with increasing pH at pH > 7.0. The equilibrium adsorption data were analyzed by the Langmuir, Freundlich, and Temkin adsorption isotherm models. The Freundlich adsorption model agrees well with experimental data. The pseudo-second order kinetic was the best fit kinetic model for the experimental data. The experimental results were also constructed an artificial neural network (ANN) to predict removal of copper ions. A four-layer ANN, an input layer with four neurons, two hidden layers with 13 neurons, and an output layer with one neuron (4-8-5-1) is constructed. Different training algorithms are tested on the model proposed to obtain the best weights and bias values for ANN. Our results suggest that SWCNTs have a good potential application in environmental protection. This novel modeling tool is newly grown and has been used yet to model the above-mentioned experiments for SWCNTs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.