347
Views
41
CrossRef citations to date
0
Altmetric
Adsorption

Removal of divalent nickel from aqueous solution using blue-green marine algae: adsorption modeling and applicability of various isotherm models

&
Pages 943-961 | Received 03 Jan 2018, Accepted 17 Sep 2018, Published online: 02 Nov 2018
 

ABSTRACT

Adsorption of Ni(II) onto blue-green marine algae (BGMA) is investigated under batch condition. Under optimum experimental conditions, the initial Ni(II) metal ion concentration is varied from 25 to 250 ppm and the maximum adsorption capacity of BGMA is found to be 42.056 mg/g. The optimum pH, biomass loading, and an agitation rate on maximum removal of Cu(II) ion are found to be 6, 2 g, and 120 rpm, respectively. 24 h of contact time is allowed to achieve equilibrium condition. All the experiments are carried out at room temperature. The equilibrium experimental data infer that the isotherm is L-shaped. It is the indication of no strong competition between solvent and Ni(II) to occupy the active sites of BGMA. Also, it indicates that the BGMA has a limited sorption capacity for adsorption of Ni(II). The experimental data are tested with various isotherm models; subsequently, the mechanism of adsorption is identified and the characteristic parameters for process design are established. Fritz–Schlunder-V isotherm model is highly significant in establishing the mechanism of adsorption of Ni(II) under the conditions employed in this investigation followed by Freundlich. The qmax of 41.89 mg/g obtained by this model indicates its relevance more precisely with experimental data.

Nomenclature

A=

Fritz–Schlunder parameter

aF=

Freundlich adsorption capacity (L/mg)

AHJ=

Harkin–Jura isotherm constant

aK=

Khan isotherm model exponent

AKC=

Koble–Carrigan’s isotherm constant

ARP=

Redlich–Peterson isotherm constant (L/g)

AT=

Temkin equilibrium-binding constant corresponding to the maximum binding energy

B=

Fritz–Schlunder parameter

BGMA=

blue-green marine algae

b=

Langmuir constant related to adsorption capacity (L/mg)

b0=

Langmuir isotherm equilibrium constant

BDR=

Dubinin–Radushkevich model constant

BHJ=

Harkin–Jura isotherm constant

bJ=

Jossens isotherm model parameter

bK=

Khan isotherm model constant

BKC=

Koble–Carrigan’s isotherm constant

bL=

Langmuir constant related to adsorption capacity (mg/g)

BRP=

Redlich–Peterson isotherm constant (L/mg)

bT=

Temkin constant which is related to the heat of sorption (J/mol)

C=

Henry’s law model intercept

Ceq=

concentration of adsorbate in bulk solution at equilibrium (mg/L)

Cin=

initial adsorbate concentration (mg/L)

J=

Jossens isotherm model parameter

K=

Henry’s constant

K1=

Hill–de Boer constant (L/mg)

K1FS5=

Fritz–Schlunder-V parameter

K2=

energetic constant of the interaction between adsorbed molecules (kJ/mol)

K2FS5=

Fritz–Schlunder-V parameter

KBS=

Brouers–Sotolongo model isotherm parameter

KDR=

Dubinin–Radushkevich model uptake capacity

KE=

Elovich constant (L/mg)

KFG=

Fowler–Guggenheim equilibrium constant (L/mg)

KFH=

Flory–Huggins equilibrium constant (L/mol)

KFS3=

Fritz–Schlunder III equilibrium constant (L/mg)

KH=

Hill isotherm constant

KHa=

Halsey isotherm constant

KHe=

Henry’s constant

KHK=

Holl–Krich isotherm model parameter

KJ=

Jossens isotherm model parameter

KJ=

Jovanovic constant

KJF=

Jovanovic–Freundlich isotherm equilibrium constant

KK=

Kiselev equilibrium constant (L/mg)

KLF=

Langmuir–Freundlich equilibrium constant for heterogeneous solid

KLJ=

Langmuir–Jovanovic model parameter

KMJ=

Marczewski–Jaroniec isotherm model parameter that characterizes the heterogeneity of the adsorbent surface

KnK=

equilibrium constant of the formation of complex between adsorbed molecules

KRaP=

Radke–Prausnits equilibrium constant

KS=

Sips isotherm model constant (L/mg)

KT=

Toth isotherm constant (mg/g)

KU=

Unilan isotherm model parameter

KVS=

Vieth–Sladek isotherm model parameter related to Henry’s law

mFS3=

Fritz–Schlunder-III model exponent

mLF=

Langmuir–Freundlich heterogeneity parameter

mRaP=

Radke–Prausnits model exponent

nF=

Freundlich adsorption intensity

nFH=

number of adsorbates occupying adsorption sites

nH=

exponent of Hill adsorption model

nHa=

Halsey isotherm exponent

nHK=

Holl–Krich Isotherm model exponent

nJF=

Jovanovic–Freundlich isotherm exponent

nKC=

Koble–Carrigan’s isotherm constant

nLJ=

Langmuir–Jovanovic model exponent

nMJ=

Marczewski–Jaroniec isotherm model parameter that characterizes the heterogeneity of the adsorbent surface

nT=

Toth isotherm exponent

P1=

Weber and van Vliet isotherm model parameter

P2=

Weber and van Vliet isotherm model parameter

P3=

Weber and van Vliet isotherm model parameter

P4=

Weber and van Vliet isotherm model parameter

qeq=

amount of adsorbate in adsorbent at equilibrium (mg/g)

qmax=

maximum quantity of solute adsorbed by the adsorbent (mg/g)

R=

gas constant (8.314 J/mol K)

RL=

Langmuir separation factor

RL=

Langmuir separation factor

T=

absolute temperature (K)

W=

interaction energy between adsorbed molecules (kJ/mol)

x=

Baudu isotherm model parameter

y=

Baudu isotherm model parameter

Greek letters

θ=

fractional surface coverage

βRP=

Redlich–Peterson isotherm exponent

βS=

Sips isotherm exponent

αBS=

Brouers–Sotolongo model isotherm parameter is related to adsorption energy

βVS=

Vieth–Sladek isotherm model parameter related to Langmuir

βU=

Unilan isotherm model exponent

αFS5=

Fritz–Schlunder-V parameter

β2FS5=

Fritz–Schlunder-V parameter

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.