32
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Removal of Submicron Silica Particles from tert-Amyl Alcohol by Dielectric/Electric Packed Bed Filtration

, , , &
Pages 1421-1434 | Published online: 23 Sep 2006
 

Abstract

A packed bed with an applied electric field is used to remove submicron and nanometer particles from a nonconducting or slightly conducting solution. Several studies have shown that the application of an electric field to a packed bed significantly increases the performance of the filtration. To enhance the electric-field filtration efficiency, it is desired that the packing materials have a higher dielectric constant than the solution so that the electric-field lines will be diverted into the packing materials.

In the present studies, a dc voltage of 0 to 8 kV/cm is applied to a packed bed (2.5-cm diameter and 3.0-cm length) filled with 1-mm-diameter glass beads. The filtration medium contains submicrometer or nanometer SiO2 particles dispersed in tert-amyl alcohol. Two particle sizes are investigated: the average particle sizes are about 300 nm and 50 nm, respectively.

Visible light spectrophotometry is used to estimate the amount of SiO2 particles in the effluent. The experimental results are presented as a series of breakthrough curves. The effect of the applied electric field on the breakthrough curve on two different particle sizes is presented. Depending on the applied electric field and the conductivity of the system, heating of the packed bed may occur. The operating current and temperature of the packed bed are also presented.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.