52
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Sorption Capacity of Ferromagnetic Microparticles Coated with CMPO

, , &
Pages 115-126 | Published online: 22 Nov 2011
 

Abstract

Magnetically assisted chemical separation (MACS) was developed at Argonne National Laboratory as a compact process for reducing the volume of high-level aqueous waste streams that exist at many U.S. Department of Energy sites. In the MACS process, ferromagnetic particles coated with solvent extractants are used to selectively separate transuranic nuclides and heavy metals from aqueous wastes. The contaminant-loaded particles are recovered from the waste stream by using a magnet. For the recovery of transuranic species the extractant used is octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in tri-n-butyl phosphate (TBP). To better understand the extraction chemistry of this solvent/particle system, europium was used to monitor the sorption capacity of the MACS particles for lanthanides and actinides. Europium concentrations varying from 10−7 M to 10−1 M were prepared with 3M NaNO3 in 0.1M HNO3. Neutron activation analysis was used to measure the concentration of europium. The sorption capacity was evaluated, along with the sorption isotherms to simulate multiple contact stages. The maximum absorption capacities obtained was 0.62 mmol/g. The adsorption models of Langmuir and Freundlich and the extended Langmuir model of Brunauer, Emmett, and Teller (BET) were fitted to the data. The best correlations were obtained from the Langmuir and BET models, a result that supports a monolayer adsorption mechanism. The Langmuir and BET models suggested a loading capacity of 0.33 mmol/g and 0.25 mmol/g, respectively. The Freundlich model results support favorable metal loading with a 1/n value of 0.3.

The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. W-31-109-ENG-38. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Notes

The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. W-31-109-ENG-38. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.