126
Views
175
CrossRef citations to date
0
Altmetric
Original Articles

Surface-enhanced raman scattering and nonlinear optics applied to electrochemistry

&
Pages 1-73 | Published online: 27 Sep 2006
 

Abstract

The most recently developed diagnostic technique in metal-electrolyte and metal-gas interfaces adapts spontaneous Raman scattering and nonlinear optical generation, techniques normally applied to bulk media, to surface science investigation. For certain metallic surfaces, an enormous increase exists in the Raman (as much as 106 to 108 times) and nonlinear optical signals resulting from submonolayer coverage of molecular adsorbates at the interface. Spontaneous Raman scattering and nonlinear optical scattering are well developed in both theory and practice for the analysis of molecular structure and concentration in bulk media. Instrumentation to generate and detect these inelastically scattered signals is readily available and is adequate for adaption to surface science. However, the mechanism (or mechanisms) giving rise to such a large enhancement at the interfaces is still being actively researched and remains controversial. Theoretical and experimental investigations related to the underlying physics of this enhancement and the application of such surface enhancement as a vibrational probe for adsorbates on the metal surface have been labeled “surface-enhanced Raman scattering” (SERS) and “surface-enhanced nonlinear optics”. Soon after the recognition that molecules adsorbed onto metal electrodes under certain conditions exhibit an anomalously large Raman scattering efficiency,1–3 it became evident that such a phenomenon makes possible an in situ diagnostic probe for detailed and unique vibrational signatures of adsorbates in the ambient phase (electrolyte and atmospheric gas surroundings). Optical spectroscopy in the visible range has a much higher energy resolution (e.g., 0. I cm-I) than is presently available in electron energy loss spectroscopy (EELS), as well as the capability to measure much lower frequency modes (e.g., as low as 5 cm−1) than is possible in infrared spectroscopy. Perhaps the most significant attribute of SERS and surface-enhanced nonlinear optical scattering is that the surrounding media in front of the interface (e.g., several meters of gas and several centimeters of liquid) do not introduce optical loss or overwhelmingly large signals. The recognition that SERS is capable of performing vibrational spectroscopy with this resolution, frequency range, and in such dense surroundings has therefore brought an explosion of activity to the field since 1977.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.