Publication Cover
Catalysis Reviews
Science and Engineering
Volume 50, 2008 - Issue 4
6,929
Views
744
CrossRef citations to date
0
Altmetric
Original Articles

The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal‐Exchanged Zeolite Catalysts

, , &
Pages 492-531 | Received 24 Jan 2008, Accepted 25 Mar 2008, Published online: 07 Jan 2009
 

An overview is given of the selective catalytic reduction of NOx by ammonia (NH3‐SCR) over metal‐exchanged zeolites. The review gives a comprehensive overview of NH3‐SCR chemistry, including undesired side‐reactions and aspects of the reaction mechanism over zeolites and the active sites involved. The review attempts to correlate catalyst activity and stability with the preparation method, the exchange metal, the exchange degree, and the zeolite topology. A comparison of Fe‐ZSM‐5 catalysts prepared by different methods and research groups shows that the preparation method is not a decisive factor in determining catalytic activity. It seems that decreased turnover frequency (TOF) is an oft‐neglected effect of increasing Fe content, and this oversight may have led to the mistaken conclusion that certain production methods produce highly active catalysts. The available data indicate that both isolated and bridged iron species participate in the NH3‐SCR reaction over Fe‐ZSM‐5, with isolated species being the most active.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.