266
Views
234
CrossRef citations to date
0
Altmetric
Theory and Methods

A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling

, &
Pages 493-500 | Received 01 Jul 1990, Published online: 27 Feb 2012
 

Abstract

A solution to multivariate state-space modeling, forecasting, and smoothing is discussed. We allow for the possibilities of nonnormal errors and nonlinear functionals in the state equation, the observational equation, or both. An adaptive Monte Carlo integration technique known as the Gibbs sampler is proposed as a mechanism for implementing a conceptually and computationally simple solution in such a framework. The methodology is a general strategy for obtaining marginal posterior densities of coefficients in the model or of any of the unknown elements of the state space. Missing data problems (including the k-step ahead prediction problem) also are easily incorporated into this framework. We illustrate the broad applicability of our approach with two examples: a problem involving nonnormal error distributions in a linear model setting and a one-step ahead prediction problem in a situation where both the state and observational equations are nonlinear and involve unknown parameters.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.