919
Views
24
CrossRef citations to date
0
Altmetric
Theory and Methods

Parametric Estimation of Ordinary Differential Equations With Orthogonality Conditions

Pages 173-185 | Received 01 Jun 2012, Published online: 10 Oct 2013
 

Abstract

Differential equations are commonly used to model dynamical deterministic systems in applications. When statistical parameter estimation is required to calibrate theoretical models to data, classical statistical estimators are often confronted to complex and potentially ill-posed optimization problem. As a consequence, alternative estimators to classical parametric estimators are needed for obtaining reliable estimates. We propose a gradient matching approach for the estimation of parametric Ordinary Differential Equations (ODE) observed with noise. Starting from a nonparametric proxy of a true solution of the ODE, we build a parametric estimator based on a variational characterization of the solution. As a Generalized Moment Estimator, our estimator must satisfy a set of orthogonal conditions that are solved in the least squares sense. Despite the use of a nonparametric estimator, we prove the - consistency and asymptotic normality of the Orthogonal Conditions estimator. We can derive confidence sets thanks to a closed-form expression for the asymptotic variance. Finally, the OC estimator is compared to classical estimators in several (simulated and real) experiments and ODE models to show its versatility and relevance with respect to classical Gradient Matching and Nonlinear Least Squares estimators. In particular, we show on a real dataset of influenza infection that the approach gives reliable estimates. Moreover, we show that our approach can deal directly with more elaborated models such as Delay Differential Equation (DDE). Supplementary materials for this article are available online.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.