2,174
Views
68
CrossRef citations to date
0
Altmetric
Pages 654-668 | Received 01 Aug 2013, Published online: 06 Jul 2015
 

Abstract

We propose a new nonparametric procedure (referred to as MuBreD) for the detection and estimation of multiple structural breaks in the autocovariance function of a multivariate (second-order) piecewise stationary process, which also identifies the components of the series where the breaks occur. MuBreD is based on a comparison of the estimated spectral distribution on different segments of the observed time series and consists of three steps: it starts with a consistent test, which allows us to prove the existence of structural breaks at a controlled Type I error. Second, it estimates sets containing possible break points and finally these sets are reduced to identify the relevant structural breaks and corresponding components which are responsible for the changes in the autocovariance structure. In contrast to all other methods proposed in the literature, our approach does not make any parametric assumptions, is not especially designed for detecting one single change point, and addresses the problem of multiple structural breaks in the autocovariance function directly with no use of the binary segmentation algorithm. We prove that the new procedure detects all components and the corresponding locations where structural breaks occur with probability converging to one as the sample size increases and provide data-driven rules for the selection of all regularization parameters. The results are illustrated by analyzing financial asset returns, and in a simulation study it is demonstrated that MuBreD outperforms the currently available nonparametric methods for detecting breaks in the dependency structure of multivariate time series. Supplementary materials for this article are available online.

Additional information

Notes on contributors

Philip Preuss

Philip Preuss (E-mail: [email protected] )

Ruprecht Puchstein

Ruprecht Puchstein (E-mail: [email protected] )

Holger Dette

and Holger Dette (E-mail: [email protected] )

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.