2,170
Views
9
CrossRef citations to date
0
Altmetric
Theory and Methods

Likelihood Ratio Tests for a Large Directed Acyclic Graph

ORCID Icon, ORCID Icon &
Pages 1304-1319 | Received 23 Oct 2018, Accepted 06 May 2019, Published online: 25 Jun 2019
 

Abstract

Inference of directional pairwise relations between interacting units in a directed acyclic graph (DAG), such as a regulatory gene network, is common in practice, imposing challenges because of lack of inferential tools. For example, inferring a specific gene pathway of a regulatory gene network is biologically important. Yet, frequentist inference of directionality of connections remains largely unexplored for regulatory models. In this article, we propose constrained likelihood ratio tests for inference of the connectivity as well as directionality subject to nonconvex acyclicity constraints in a Gaussian directed graphical model. Particularly, we derive the asymptotic distributions of the constrained likelihood ratios in a high-dimensional situation. For testing of connectivity, the asymptotic distribution is either chi-squared or normal depending on if the number of testable links in a DAG model is small. For testing of directionality, the asymptotic distribution is the minimum of d independent chi-squared variables with one-degree of freedom or a generalized Gamma distribution depending on if d is small, where d is number of breakpoints in a hypothesized pathway. Moreover, we develop a computational method to perform the proposed tests, which integrates an alternating direction method of multipliers and difference convex programming. Finally, the power analysis and simulations suggest that the tests achieve the desired objectives of inference. An analysis of an Alzheimer’s disease gene expression dataset illustrates the utility of the proposed method to infer a directed pathway in a gene network.

Acknowledgments

The authors would like to thank the editor, the associate editor, and two anonymous referees for helpful comments and suggestions.

Additional information

Funding

Research supported in part by NSF grants DMS-1712564, DMS-1721216, NIH grants 1R01GM081535-01, 1R01GM126002, HL65462, and R01HL105397.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.