2,232
Views
16
CrossRef citations to date
0
Altmetric
Applications and Case Studies

MIMIX: A Bayesian Mixed-Effects Model for Microbiome Data From Designed Experiments

, , , &
Pages 599-609 | Received 18 Jul 2017, Accepted 18 May 2019, Published online: 05 Jul 2019
 

Abstract

Recent advances in bioinformatics have made high-throughput microbiome data widely available, and new statistical tools are required to maximize the information gained from these data. For example, analysis of high-dimensional microbiome data from designed experiments remains an open area in microbiome research. Contemporary analyses work on metrics that summarize collective properties of the microbiome, but such reductions preclude inference on the fine-scale effects of environmental stimuli on individual microbial taxa. Other approaches model the proportions or counts of individual taxa as response variables in mixed models, but these methods fail to account for complex correlation patterns among microbial communities. In this article, we propose a novel Bayesian mixed-effects model that exploits cross-taxa correlations within the microbiome, a model we call microbiome mixed model (MIMIX). MIMIX offers global tests for treatment effects, local tests and estimation of treatment effects on individual taxa, quantification of the relative contribution from heterogeneous sources to microbiome variability, and identification of latent ecological subcommunities in the microbiome. MIMIX is tailored to large microbiome experiments using a combination of Bayesian factor analysis to efficiently represent dependence between taxa and Bayesian variable selection methods to achieve sparsity. We demonstrate the model using a simulation experiment and on a 2 × 2 factorial experiment of the effects of nutrient supplement and herbivore exclusion on the foliar fungal microbiome of Andropogon gerardii, a perennial bunchgrass, as part of the global Nutrient Network research initiative. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Supplementary Materials

The supplemental materials include a description of the NutNet data collection, MCMC details, additional simulation studies, and supporting details of the NutNet data analysis including prior-sensitivity and model-fit checks

Additional information

Funding

This work was supported by National Science Foundation award EF-1241794.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.