2,367
Views
12
CrossRef citations to date
0
Altmetric
Theory and Methods

Privacy-Preserving Parametric Inference: A Case for Robust Statistics

Pages 969-983 | Received 18 Jun 2018, Accepted 16 Nov 2019, Published online: 16 Oct 2020
 

Abstract

Differential privacy is a cryptographically motivated approach to privacy that has become a very active field of research over the last decade in theoretical computer science and machine learning. In this paradigm, one assumes there is a trusted curator who holds the data of individuals in a database and the goal of privacy is to simultaneously protect individual data while allowing the release of global characteristics of the database. In this setting, we introduce a general framework for parametric inference with differential privacy guarantees. We first obtain differentially private estimators based on bounded influence M-estimators by leveraging their gross-error sensitivity in the calibration of a noise term added to them to ensure privacy. We then show how a similar construction can also be applied to construct differentially private test statistics analogous to the Wald, score, and likelihood ratio tests. We provide statistical guarantees for all our proposals via an asymptotic analysis. An interesting consequence of our results is to further clarify the connection between differential privacy and robust statistics. In particular, we demonstrate that differential privacy is a weaker stability requirement than infinitesimal robustness, and show that robust M-estimators can be easily randomized to guarantee both differential privacy and robustness toward the presence of contaminated data. We illustrate our results both on simulated and real data. Supplementary materials for this article are available online.

Supplementary Materials

The supplementary materials include all the omitted proofs and some auxiliary results regarding the influence function. They also include more extended discussions of competing methods and details about the estimation of the variance in the noise calibration of our Gaussian mechanism.

Acknowledgment

The author would like to thank Roy Welsch for many helpful discussions.

Additional information

Funding

The author is grateful for the financial support of the Swiss National Science Foundation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.