50
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Variational and Regularization Framework for Stable Strong Solutions of Nonlinear Boundary Value Problems

Pages 394-419 | Received 14 Dec 2022, Accepted 03 Feb 2023, Published online: 23 Feb 2023
 

Abstract

We study a variational approach introduced by S.D. Fisher and the author in the 1970s in the context of norm minimization for differentiable mappings occurring in nonlinear elliptic boundary value problems. It may be viewed as an abstract version of the calculus of variations. A strong hypothesis, initially limiting the scope of this approach, is the assumption of a bounded minimizing sequence in the least squares formulation. In this article, we employ regularization and invariant regions to overcome this obstacle. A consequence of the framework is the convergence of approximations for regularized problems to a desired solution. The variational method is closely associated with the implicit function theorem, and it can be jointly studied, so that continuous parameter stability is naturally deduced. A significant aspect of the theory is that the reaction term in a reaction-diffusion equation can be selected to act globally as in the steady Schrödinger-Hartree equation. Local action, as in the non-equilibrium Poisson-Boltzmann equation, is also included. Both cases are studied at length prior to the development of a general theory.

2020 AMS CLASSIFICATION NUMBERS:

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.