167
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

A Multimineral Natural Product from Red Marine Algae Reduces Colon Polyp Formation in C57BL/6 Mice

, , , , , , , & show all
Pages 1020-1028 | Received 13 Feb 2012, Accepted 13 Jul 2012, Published online: 04 Oct 2012
 

Abstract

The goal of this study was to determine if a multimineral natural product derived from red marine algae could reduce colon polyp formation in mice on a high-fat diet. C57BL/6 mice were maintained for up to 18 mo either on a high-fat “Western-style” diet or on a low-fat diet (AIN 76A), with or without the multimineral-supplement. To summarize, colon polyps were detected in 22 of 70 mice (31%) on the high-fat diet but in only 2 of 70 mice (3%) receiving the mineral-supplemented high-fat diet (P < 0.0001). Colon polyps were detected in 16 of 70 mice (23%) in the low-fat group; not significantly different from high-fat group but significantly higher than the high-fat-supplemented group (P = 0.0006). This was in spite of the fact that the calcium level in the low-fat diet was comparable to the level of calcium in the high-fat diet containing the multimineral-product. Supplementation of the low-fat diet reduced the incidence to 8 of 70 mice (11% incidence). Taken together, these findings demonstrate that a multimineral natural product can protect mice on a high-fat diet against adenomatous polyp formation in the colon. These data suggest that increased calcium alone is insufficient to explain the lower incidence of colon polyps.

ACKNOWLEDGMENTS

This study was supported in part by grant CA140760 from the National Institutes of Health, Bethesda, MD, and by grant 11-0577 from the Association for International Cancer Research, St. Andrews, Fife, Scotland.

The authors would like to acknowledge Ron Craig (Histomorphometry Core) for his ScanScope services and Mark Deming (The Pathology Imaging Laboratory) for his help with stereomicroscopy and imaging. The core laboratories are supported by the Department of Pathology at the University of Michigan. The authors would also like to thank Marigot, Ltd. (Cork, Ireland) for providing the multi-mineral supplement (Aquamin®) as a gift.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.