213
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Diallyl Sulfide Promotes Cell-Cycle Arrest Through the p53 Expression and Triggers Induction of Apoptosis Via Caspase- and Mitochondria-Dependent Signaling Pathways in Human Cervical Cancer Ca Ski Cells

, , , , , , , & show all
Pages 505-514 | Received 16 Jul 2011, Accepted 03 Apr 2012, Published online: 26 Mar 2013
 

Abstract

Diallyl sulfide (DAS) is a component of garlic (Alliaceae family). Although diallyl polysulfide has been shown to exhibit anticancer activities, no report explored DAS-affected cell death in human cervical cancer cells in vitro. This study investigated DAS affected on cell-cycle regulation and apoptosis in human cervical cancer Ca Ski cells. DAS at 25–100 μM decreased the viability of Ca Ski cells by increasing G0/G1 phase arrest followed by induction of apoptosis in concentration- and time-dependent effects. Flow cytomteric assay indicated that DAS (75 μM) promoted the production of Ca2+ accumulation and decreased the level of mitochondrial membrane potential in Ca Ski cells. Western blotting showed that 75 μM of DAS-induced G0/G1 phase arrest was mediated through the increased expression of p21, p27, and p53 with a simultaneous decrease in CDK2, CDK6, and CHK2 expression. The characteristics of apoptosis, such as morphological changes and DNA condensation, altered the ratio of Bax/Bcl-2 and sub-G1 phase occurred in Ca Ski cells after exposure to DAS. Furthermore, DAS induced mitochondrial dysfunction, leading to the release of cytochrome c for causing apoptosis in Ca Ski cells. These findings suggest that DAS might be a potential chemotherapeutic agent for the treatment of cervical cancer.

ACKNOWLEDGMENTS

Fu-Shin Chueh and Jing-Gung Chung contributed equally to the work.

This work was supported by the grants CMU100-S-14 from China Medical University, Taichung, Taiwan.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.