158
Views
2
CrossRef citations to date
0
Altmetric
Articles

Microbial Metabolites of Flavanols in Urine are Associated with Enhanced Anti-Proliferative Activity in Bladder Cancer Cells In Vitro

, , , , &
Pages 194-210 | Received 09 Oct 2020, Accepted 10 Dec 2020, Published online: 01 Feb 2021
 

Abstract

Flavanols are metabolized by the gut microbiota to bioavailable metabolites, and the absorbed fraction is excreted primarily via urine. Uroepithelial cells are thus a potential site of activity due to exposure to high concentrations of these compounds. Chemoprevention by flavanols may be partly due to these metabolites. In Vitro work in this area relies on a limited pool of commercially available microbial metabolites, and little has been done in bladder cancer. The impact of physiologically relevant mixtures of flavanols and their metabolites remains unknown. Rats were fed various flavanols and urine samples, approximating the bioavailable metabolome, were collected. Urines were profiled by UPLC-MS/MS, and their anti-proliferative activities were assayed In Vitro in four bladder cancer models. Significant interindividual variability was observed for composition and proliferation. Microbial metabolite concentrations (valerolactones, phenylalkyl acids and hippuric acids) were positively associated with reduced bladder cancer proliferation In Vitro, while native flavanols were poorly correlated with activity. These results suggest that microbial metabolites may be responsible for chemoprevention in uroepithelial cells following flavanol consumption. This highlights the potential to use individual genetics and microbial metabotyping to design personalized dietary interventions for cancer prevention and/or adjuvant therapy to reduce bladder cancer incidence and improve outcomes.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Funding for this project was provided through startup funding from North Carolina State University, as well as support from the North Carolina Agricultural Research Service (NCARS) and the Hatch Program of the National Institute of Food and Agriculture, U.S. Department of Agriculture (APN). We would also like to acknowledge the Case Research Institute, a joint venture between University Hospitals and Case Western Reserve University, start-up funds (to MMG), and the Cell and Molecular Biology Training Program (T32 GM 008056 to SEK). The authors declare no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.