149
Views
9
CrossRef citations to date
0
Altmetric
Articles

Quercetin Antagonizes Esophagus Cancer by Modulating miR-1-3p/TAGLN2 Pathway-Dependent Growth and Metastasis

, , &
Pages 1872-1881 | Received 10 Apr 2021, Accepted 17 Aug 2021, Published online: 09 Sep 2021
 

Abstract

The progression of esophagus cancer (EC) is associated with the alterative expressions of multiple microRNAs (miRs). MiR-1-3p is reported to inhibit the development of EC by targeting TAGLN2. Quercetin (Que) is a natural compound capable of antagonizing esophagus carcinoma (EC). In the current study, the role of miR-1-3p/TAGLN2 axis in the anti-EC function of Que was explored. Human EC cell lines KYSE-510 and TE-7 were treated with Que. Then the effects of Que on the growth and metastasis of EC cells, and on the activity of miR-1-3p/TAGLN2 axis were detected. The interaction between Que and miR-1-3p axis was further assessed by inhibiting miR-1-3p level in EC cells. The results showed that the treatment of Que impaired the growth and induced cell apoptosis in EC cells. The invasive ability of EC cells was also suppressed by Que. At molecular level, the expression of miR-1-3p was induced, while the expression of TAGLN2 was suppressed by Que. Moreover, the anti-EC effects of Que were blocked by miR-1-3p inhibition, which was represented by the restored growth and invasion of EC cells. Collectively, the current study demonstrated that Que exerted inhibitory effects on EC cells by inducing miR-1-3p.

Supplemental data for this article is available online at https://doi.org/10.1080/01635581.2021.1972125

Availability of Data and Materials

The data will be provided when required.

Disclosure Statement

The authors declare that they have no competing interests

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.