398
Views
45
CrossRef citations to date
0
Altmetric
Articles

Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite

, , &
Pages 111-124 | Received 07 Feb 2012, Accepted 03 May 2012, Published online: 13 Aug 2012
 

Abstract

Dispersion of nanoparticles and its effect on the tensile properties were investigated by preparing nanocomposites via mechanical mixing (MM) and optimized ultrasonic dual mode mixing (UDMM) routes. The MM of SiO2 nanoparticles in epoxy resin was employed using glass rod stirring and the UDMM was employed by ultrasonic vibration along with magnetic stirring to produce SiO2-epoxy nanocomposite. Taguchi method was used for optimization of the process parameters of UDMM route considering the tensile strength of the base epoxy. Field emission scanning electron microscopy (FE-SEM) micrographs revealed an improved dispersion quality of SiO2 nanoparticles especially for the UDMM route. Consequently, quality of dispersion affects tensile strength (max 49.2%) along with ductility and absorbed failure energy at low nanoparticle content. Moreover, elastic modulus increases with increasing content of nanoparticle, e.g. in one case 62.55% for 20 wt.% of SiO2 nanoparticles.

Acknowledgement

The authors would like to express their gratitude to the Department of Science & Technology of India (DST) for providing financial support. This work forms a part of Ph.D. thesis work of Mr. Sudipta Halder.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.