218
Views
24
CrossRef citations to date
0
Altmetric
Articles

Electrospray ionization for deposition of ultra-thin polymer layers – principle, electrophoretic effect and applications

, , &
Pages 988-1005 | Received 29 Mar 2012, Accepted 15 Jun 2012, Published online: 25 Sep 2012
 

Abstract

Nebulizing of polymer solutions, in a high-voltage field under atmospheric conditions by electrospray ionization (ESI), is a comfortable way to deposit ultra-thin layers of polar or ionic polymers onto any conductive substrate materials. The substrate is grounded and the polymer solution is sprayed through a powered capillary. The formed charged droplets shrink by solvent evaporation during their way to the grounded substrate, the charges close ranks and the droplets collapse consecutively by charge repulsion, thus forming finally charged single macromolecules. After their discharging at the grounded substrate, an ultra-thin ‘quasi-monomolecular’ polymer layer is formed. It could be shown by imaging of scratches through the polymer layer by atomic force microscopy that the deposited polymer layers are dense at a thickness of about 10 nm. Carbon fibre bundles were coated with poly(allylamine) (PAAm) or poly(acrylic acid) (PAA) as potential adhesion-promoting layers in fibre–polymer composites. The polymer deposition is self-inhibiting after formation of a continuous coverage of about 200 nm for PAAm and 30 nm for PAA as result of surface charging. Continuous deposition onto such isolating layers or polymers without charging can be achieved by using current of alternating polarity. The film formation is self-healing because of the electrophoretic effect, i.e. the ion discharging occurs preferentially at non-coated areas. This electrophoretic effect of ESI was demonstrated by completely enwrapping all the carbon fibres of the roving within a distance of about 100 μm far from its outside and also at the backside of the fibre bundle with about 80% of the topside coverage, as measured by X-ray photoelectron spectroscopy and visualized using scanning electron microscopy.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG) (No. Fr975–26/1) for financial support. Further thank is given to Mrs. B. Strauß and Mrs. S. Benemann (Berlin, Germany) for accurate SEM measurements.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.