179
Views
9
CrossRef citations to date
0
Altmetric
Articles

Non-isothermal kinetics of thermal degradation of DGEBA/TU-DETA epoxy system

, , , &
Pages 1792-1807 | Received 15 Jan 2014, Accepted 06 May 2014, Published online: 02 Jun 2014
 

Abstract

A curing agent Thiourea-diethylenetriamine (TU-DETA) was successfully prepared with its structure characterized by Fourier transform infrared spectrum and nuclear magnetic resonance (13C-NMR spectrum). The curing agent TU-DETA contained incompletely reacted material diethylenetriamine (DETA) and the polymerization degree (n) of TU-DETA was equaled to either 1 or 3 according to liquid chromatography–mass spectrometry (LC-MS) analysis. Kinetics of thermal degradation of DGEBA (diglycidyl ether of bisphenol A)/TU-DETA epoxy system was investigated with thermogravimetric analysis (TGA) under non-isothermal conditions with heating rates of 5, 10, 12.5, 15, and 20 °C/min. The derivative thermogravimetry curves of DGEBA/TU-DETA epoxy system revealed that the thermal degradation process was only a single weight-loss step. The apparent average activation energy calculated with the Flynn–Wall–Ozawa method was 140.4 kJ/mol. With a combination of the Coats–Redfern and Phadnis–Deshpande methods, it was showed that the most probable mechanism of degradation process of the cured epoxy resin was F1 deceleration type.

Acknowledgments

The authors gratefully acknowledge the financial support from the funding of Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, and the English correction by Dr Jianjia Yu and Mr Shangwen Zha of New Mexico Institute of Mining and Technology of United States of America.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.