221
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of different surface treatments on the repair bond strength of resin composites with titanium

, ORCID Icon, ORCID Icon, &
Pages 2385-2403 | Received 20 Feb 2019, Accepted 04 Jul 2019, Published online: 24 Jul 2019
 

Abstract

The purpose of this study was to evaluate the effect of different surface treatment combinations on the bonding of composite resins to NiCr and titanium alloys after thermal cycling. Square-shaped specimens (10 mm x 10 mm x 2 mm) were made from NiCr and titanium alloys. The specimens were divided into 6 pretreatment groups (n = 11): (1) machined titanium (control, no treatment); (2) CoJet sand application; (3) grinding with a diamond bur; (4) metal primer application; (5) CoJet sand + metal primer application; and (6) grinding with a diamond bur + metal primer application. The surface roughness of the mechanically treated specimens (control, grinding, CoJet sand) was evaluated. The surface morphology of both metals and elemental composition were examined with SEM and EDS. The composite resin was applied to the specimens. Shear bond strength (SBS) was tested after thermal cycling (5000 cycles, 5 °C to 55 °C). Failure modes were determined. The data were analyzed using the Shapiro-Wilk test, two-way ANOVA and post hoc Fisher’s LSD test (p = .05). For titanium specimens, the grinding + metal primer exhibited higher values than the other groups, and all groups showed higher SBS values than the control group. Combined use of CoJet sand, grinding with a diamond bur, and metal primer application would be useful for enhancing the bond strength of composite resin to titanium. The grinding of the NiCr surface with a diamond bur is the only method that could improve the bond strength of a composite resin compared to the other methods.

Acknowledgements

The authors thank Associate Professor Tamer Tuzuner for his valuable assistance with the statistical analyisis.

Disclosure statement

All authors declare that they have no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.