229
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Corrosion inhibition and adsorption properties of cerium-amino acid complexes on mild steel in acidic media: Experimental and DFT studies

, ORCID Icon, , , &
Pages 2047-2074 | Received 27 Nov 2019, Accepted 24 Mar 2020, Published online: 08 Apr 2020
 

Abstract

The corrosion inhibition and adsorption behavior of glutamic acid (Glu), glutamine (Gln), and their cerium complexes: cerium glutamate (Ce(Glu)) and cerium glutamine (Ce(Gln)) on mild steel in 0.5 M HCl solutions were studied at 25 and 55 °C and concentration range of 25–200 ppm using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopic (EIS) techniques. The inhibition efficiency was found to be dependent on the concentration and temperature of the system. The potentiodynamic polarization results suggest that the compounds act as mixed-type inhibitors with dominant cathodic inhibition. The mechanism of adsorption deduced from the variation of inhibition efficiency with temperature, as well as the activation parameters, suggest significant physisorption of the inhibitor molecules on the metal surface. The experimental data adhere to the Langmuir and El-Awady et al. kinetic adsorption models. The extent of inhibition was found to be Ce-Gln > Gln and Ce-Glu > Glu. The scanning electron microscope was employed for the morphological studies and the characteristic of the protective layer on the steel surface verified using UV-Vis spectroscopy and FTIR spectroscopy. Adsorption of the inhibitors on Fe (110) surface was evaluated theoretically.

Acknowledgement

This project was supported by Chinese Academy of Sciences Visiting Professorship for Senior International Scientists, Grant No. [2019VEA0030].

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.