318
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Porosity-grain growth relationships in the laser beam deep penetration welding of 6061 aluminum alloy

, , , &
Pages 1372-1392 | Received 21 Jul 2020, Accepted 28 Oct 2020, Published online: 22 Nov 2020
 

Abstract

Porosity is one of the significant defects existing in the weld seam of aluminum alloy by laser. In the current research, the evolution of porosity and grain coupling growth in the weld seam is realized via a Cellular Automaton-Finite Element simulation method. A detailed calculating method of three phases was proposed by taking into account the liquid/solid phase transformation on the nucleation and growth of porosity. The results show that the porosity nuclei with larger size can grow preferentially, while the small porosity nuclei's development is inhibited. Because of the effect of gas/liquid surface tension, porosity increases spherically when it is enveloped by liquid. After touching with grain, the porosity's growth space is restricted by the complex dendrite network, and thus its shape becomes irregular. The coupling of grain and micro-porosities predicted by the simulation method is in good agreement with the results obtained by the experiments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.