55
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Response of summer‐planted potatoes to level of applied nitrogen and water

&
Pages 197-218 | Published online: 21 Nov 2008
 

Abstract

The irrigation and nitrogen (N) requirements of potatoes (cv. Delaware) were determined using sprinklers in a line‐source design on a Spearwood sand. Irrigation water was applied at 73 to 244% of the daily pan evaporation (Epan) and N at 0 to 800 kg N ha‐1 (total applied) as NH4NO3 in 10 applications post‐planting. There was a significant yield (total and marketable) response to irrigation, at all levels of applied N, and N at all levels of applied water (P<0.001). The interaction between irrigation and N was also significant (P<0.001). There was no significant yield response to irrigation from 149% Epan (i.e., W3 treatment) to 244% Epan (i.e., W6 treatment). Irrigation at 125 and 150% of Epan was required for 95 and 99% of maximum yield, respectively, as determined from fitted Mitscherlich relationships. Critical levels of N required for 95 (417 kg ha‐1) and 99% (703 kg ha‐1) of maximum yield were also determined from a Mitschlerlich relationship fitted to the average of the W3 to W6 treatments. The percent total N and nitrate‐N in petioles of youngest fully expanded leaves required for 95 and 99% of maximum yield was 1.78 and 2.11, respectively, at the 10 mm tuber stage, and 0.25 and 0.80% at the 10mm plus 14 day stage (from quadratic regressions). There was a significant (P≤0.001) increase in N uptake by tubers with level of applied N from 57 kg ha‐1 at 0 kg applied N ha‐1 to 190 kg ha‐1 at 800 kg applied N ha‐1 (from a Mitscherlich relationship fitted to the average of W3 to W6 treatments). After accounting for N uptake from soil reserves (57 kg N ha‐1), apparent recovery efficiency (RE) of fertilizer N by tubers [RE=(Up‐Uo/Np) where Up=uptake of N by the crop, Uo=uptake in absence of applied N and Np is the level of applied N, expressed as a fraction] declined from 0.28 at 100 kg applied N ha‐1 to 0.17 at 800 kg applied N ha‐1. There was a linear increase in ‘after cooking darkening’ (i.e., greying) of tubers with increasing level of applied N. Conversely, ‘sloughing’ (i.e., disintegration) of tubers decreased (inverse polynomial) with increasing level of applied N. Rate of irrigation had no effect on these cooking qualities. Reducing applied irrigation and N from levels required for 99% of maximum yield to levels required for 95% of maximum yield would not lead to a significant reduction in profit. This would increase apparent recovery efficiency of applied N by plants, maintain tuber quality, and reduce the impact of potato production on the water systems of the Swan coastal plain.

Notes

Present address: Technico Pty. Limited, 14 Sentinel Gardens, Leeming, Western Australia 6149, Australia.

Corresponding author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.