256
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Responses of Lentil to Co-Inoculation with Phosphate-Solubilizing Rhizobial Strains and Arbuscular Mycorrhizal Fungi

, , &
Pages 1509-1522 | Received 13 Oct 2004, Accepted 07 Dec 2005, Published online: 14 Feb 2007
 

ABSTRACT

The purpose of this study was to evaluate the responses of lentil (Lens culinariscv. ‘Ziba’) to co-inoculation with arbuscular mycorrhizal (AM) fungi and some indigenous rhizobial strains varying in phosphorus (P)-solubilizing ability in a calcareous soil with high pH and low amounts of available P and nitrogen (N). A factorial experiment with completely randomized block design was conducted under controlled greenhouse conditions. The treatments consisted of (1) three inoculants of Rhizobium leguminosarum bv. viciae strains and a mixed rhizobial inoculant with an effective P-solubilizer strain of Mesorhizobium ciceri, (2) two AM fungal species, Glomus mosseae and Glomus intraradices, (3) two P sources, superphosphate and phosphate rock. Four replications were prepared for each treatment and a related control. After the growth period of three months, the dry matter of shoots plus seeds, their P and N contents, and percent of root colonized by AM fungus were measured. The results showed that the effects of AM fungi, rhizobial strains, and P fertilizers were highly significant (p < 0.01) for all the characteristics studied. The rhizobial strain with P-solubilizing ability showed a more beneficial effect on plant growth and nutrient uptake than the strain without this ability, although both strains had similar effectiveness for N2-fixation in symbiosis with lentil. Synergistic relationships were observed between AM fungi and some rhizobial strains that related to the compatible pairing of these two microsymbionts. The P-uptake efficiency was increased when P fertilizers were applied along with AM fungi and/or P-solubilizer rhizobial strains.

ACKNOWLEDGMENTS

Financial support for this investigation provided by grants from the Iranian Ministry of Science, Research and Technology, the Center of Excellence in Soil Science, and the “Studies and Researches Between Universities” program is gratefully acknowledged.

Notes

∗HD: halo diameter (mm) and CD: colony diameter (mm).

∗,∗∗Significant at 0.05, 0.01 probability level, respectively.

∗∗Significant at 0.01 probability level.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.