342
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Mineral Elements Uptake and Growth of Strawberry as Influenced by Organic Substrates

, , &
Pages 1498-1512 | Received 17 Feb 2008, Accepted 18 Feb 2009, Published online: 03 Aug 2009
 

ABSTRACT

Pot experiment was conducted in a greenhouse to compare the effect of four organic substrates [S1: Persian turpentine trees leaf mold (50%) + Soil (50%); S2: Oak leaf mold (50%) + Soil (50%); S3: Cypress leaf mold (50%) + Soil (50%) and S4: liquorice processing wastes (50%) + Soil (50%)] application on strawberry growth, yield, and nutrient concentration, and on some soil properties. Results showed that leaves mold and liquorice wastes application decreased pH, increased soil organic matter, and increased soil concentrations in all mineral elements studied, except for potassium (K). The amount of mineral elements in substrates had also a great influence on the leaf nutrient concentrations. High levels of nitrogen (N), K, iron (Fe), manganese (Mn), and zinc (Zn) were obtained in leaves; while phosphorus (P) concentration was lower than sufficient levels. Although, strawberry fresh and dry weights and leaf chlorophyll content were significantly higher in plants grown in S4 with no added fertilizer, the highest fruit yield was obtained in combination substrates with 50% fertilizer. Our results indicate that use of leaf mold and liquorice wastes in soil mixtures can reduce the amount of fertilizer required for optimum strawberry plant growth and yield.

ACKNOWLEDGMENTS

The authors would like to take this opportunity to thank Mr. M. Hamidian for providing the plant materials and greenhouse equipments for this research.

Notes

NS,

∗,

∗∗ Nonsignificant, significant at P = 0.05 and 0.01, respectively.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.