165
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

DEVELOPMENT OF A VEGETATION INDEX FOR ESTIMATION OF LEAF AREA INDEX BASED ON SIMULATION MODELING

, &
Pages 328-338 | Received 30 May 2008, Accepted 05 Jan 2009, Published online: 08 Jan 2010
 

Abstract

Leaf area index (LAI) is an important structural variable for quantitative analysis of the energy and mass exchange characteristics of a terrestrial ecosystem. The objective of the research was to use the Scattering by Arbitrarily Inclined Leaves (SAIL) model to develop a new vegetation index for estimating LAI based on the Ratio Vegetation Index (RVI) and Perpendicular Vegetation Index (PVI). In the study, RVIs and PVIs were derived from the SAIL-simulated reflectance, and several potential limitations of RVI and PVI in LAI estimation were identified. First, for a given LAI level, a dark soil background resulted in higher RVI values and overestimated LAI values. The reverse was true for light colored soils. On the contrary, the PVI tended to underestimate LAI for dark soil background and overestimate LAI for light soil background. The RVI behaves oppositely to PVI in LAI estimation for same soil background. Based on these results, a new vegetation index (RMPVI: RVI Multiplied by PVI Vegetation Index) was constructed, and the sensitivity of this index to LAI was then evaluated and the performance of RMPVI in LAI estimation was compared with those of other vegetation indices. The results show that the RMPVI can greatly minimize the soil background influences, and is more sensitive to LAI than other indices, especially when LAI is greater than 2. As for LAI estimation, RMPVI can yield highest R2 than other vegetation indices used in the study, with a root mean square error (RMSE) of 0.16, which shows RMVPI is an efficient index for LAI estimation.

ACKNOWLEDGMENTS

This project supported by the National Natural Science Foundation of China (40571115), the Hi-Tech Research and Development Program (863) of China (2006AA120101), and National Key Technology R&D Program (2006BAD10A01).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.