651
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

GROWTH, NUTRIENT ACQUISITION, AND PHYSIOLOGICAL RESPONSES OF HYDROPONIC GROWN TOMATO TO SODIUM CHLORIDE SALT INDUCED STRESS

, , , , &
Pages 665-676 | Received 14 Sep 2010, Accepted 04 Oct 2011, Published online: 07 Feb 2013
 

Abstract

□ Growth and nutrient acquisition of tomato (Lycopersicon esculentum L.) cv ‘Amani’ were studied under induced salt stress in Hoagland's solution. The plants were treated for 37 days with salinity induced by incorporating different concentrations [0.0 (control), 50, 100, 150, or 200 mM] of sodium chloride (NaCl) to the nutrient solution. Slight reduction was obtained in growth represented by (shoot length and number, leaf number, and dry weight) when seedlings were directly exposed to NaCl stress from 0.0 to 100 mM. At higher concentrations (150 or 200 mM), growth parameters were adversely affected and seedlings died thereafter. Elevated salinity significantly reduced crude protein and fiber in shoots and roots. Tomato shoot and root contents of potassium (K), iron (Fe), and ash were reduced significantly in response to increased levels of salinity. Tissue contents of sodium (Na) and chloride (Cl) increased with elevated salinity treatments.

ACKNOWLEDGMENT

The financial support of Deanship of Academic Research - The University of Jordan, is greatly appreciated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.