290
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Physiological Responses of Leymus Chinensis to Long-Term Salt, Alkali and Mixed Salt-Alkali Stresses

, &
Pages 526-540 | Received 03 May 2012, Accepted 02 Nov 2012, Published online: 17 Oct 2014
 

Abstract

The aim of this study was to evaluate the physiological responses of Leymus chinensis (Trin.) Tzvel exposed to long-term salt, salt-alkali, and alkali stress in order to elucidate how L. chinensis can survive under alkaline-sodic soils. L. chinensis (30 days after germination) were stressed with salt [SS; sodium chloride (NaCl)], mixed salt-alkali [MS; molar ratio of NaCl: sodium carbonate (Na2CO3) = 2:1] and alkali salt (AS; Na2CO3) at four different levels of sodium (Na+) concentration (0, 75, 150, and 300 mM) for 60 days. L. chinensis showed 100% survival rate at all treatments except 300 mM SS (33.3%) and AS (18.9%). The growth and physiological parameters of survival plants were measured. As anticipated, growth of L. chinensis was inhibited after stresses, which reflected in the decline of plant height, dry weight and tiller number following the increased Na+ concentration. The content of Na+, proline, and soluble sugar in L. chinensis increased with the increasing Na+ concentration, suggesting that L. chinensis need to accumulate inorganic and organic solutes for resisting osmotic stress induced by various salt stresses. These processes ensure the water balance that can provide a relative normal physiological environment for L. chinensis. Potassium (K+) content of L. chinensis kept at a relative lower level than control to ensure the normal physiological processes. Chlorophyll content of stressed plant increased slightly compared to control plants, which can produce more energy for L. chinensis resisting various stresses. The increased malondialdehyde (MDA) content of stressed plants showed the damage of various stresses. Among the three treatments (SS, MS, and AS), the injury extent for L. chinensis can be expressed by AS>SS>MS, and MS was the most complicated for the counterbalance effects of soil electrical conduction and pH.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.