1,134
Views
85
CrossRef citations to date
0
Altmetric
ARTICLES

Growth and enzymatic activity of maize (Zea mays L.) plant: Solution culture test for copper dioxide nano particles

, , &
Pages 99-115 | Received 10 Feb 2013, Accepted 11 Feb 2013, Published online: 05 Jan 2016
 

ABSTRACT

Copper (Cu) is an essential micronutrient for plants, which acts either as the metal component of enzymes or as a functional structural or a regulatory co-factor of a large number of enzymes. To understand the possible benefits of applying nanotechnology to agriculture, the first step should be to analyze penetration and transport of nano-particles in plants. The present study was conducted to test the hypothesis that copper nanoparticle would enter into the plant cell and govern the growth of maize plant.A solution culture experiment was conducted to investigate the effect of Cu nano-particles (<50nm) on the growth and enzymatic activity of maize (Zea mays L.) plant. Bioaccumulation of Cu nano-particles in plant was also investigated. Results showed that Cu nano-particles can enter into the plant cell through roots and leaves. Bioaccumulation increased with increasing concentration of Cu nano-particles (NPs), and agglomeration of particles was observed in the cells using transmission-electron microscopy. Application of Cu nano-particles through solution culture as well as spray enhanced the growth (51%) of maize plant in comparison to control. The different enzymatic activities like glucose-6-phosphate dehydrogenase, succinate dehydrogenase, superoxide dismutase, catalase, andguaiacol peroxidase were studied to find a possible pathway through which NPs may affect the enzymatic activity of plant. Amongst the enzymes, the activity of glucose-6-phosphate dehydrogenase was highly influenced by copper oxide (CuO)nano-particles application by spray as well as in solution. Experimental results revealed that CuOnano-particles affected the pentose phosphate pathway of maize plant. The obtained experimental results provided conclusive evidence to indicate that the nano-particles considered under this study could enter into the plant cell, easily be assimilated by plants and also enhanced its growth by regulating the different enzyme activities.

Funding

We sincerely acknowledged World-Bank and Indian Council of Agriculture Research (ICAR) for the financial support under National Agricultural Innovative Project (NAIP).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.