507
Views
11
CrossRef citations to date
0
Altmetric
Articles

Monitoring the photosystem II behavior of wild and cultivated barley in response to progressive water stress and rehydration using OJIP chlorophyll a fluorescence transient

, , &
Pages 1174-1185 | Received 19 Jun 2013, Accepted 11 Dec 2013, Published online: 06 Jul 2016
 

ABSTRACT

To study the effects of progressive drought stress on photosystem II behavior of wild type (Spantaneum) and cultivated barley (Morocco), different levels of soil water availability, including control, moderate, mild, and severe water stress (70%, 50%, 30%, and 10% water holding capacity of soil, respectively) and rehydration were used. Polyphasic OJIP fluorescence transient of Morocco plants exhibited a considerable increase in fluorescence intensity at O, J, and I steps under mild and severe stress relative to slight increase in wild barley. Values of fluorescence parameters and quantum efficiencies, including minimal fluorescence, relative variable fluorescence at phase J and I, maximal quantum yield of photosystem II (PSII), performance index, electron transport yield, and excitation transfer efficiency were influenced by water stress in both genotypes. These parameters were significantly less affected in wild type barley by progressive drought stress compared to Morocco. After re-watering, both genotypes were able to restore from severe drought in most of the traits. Based on our findings, highly correlated values of relative water content (RWC) and independent JIP-test parameters (P < 0.01) indicate that the chlorophyll a fluorescence induction technique is sensitive to plant water status and performance index represent an accurate and reliable indicator for early stress detection and also explore plant vitality under water stress.

Acknowledgments

We would like to thank the Plant Stress Center of Excellence (PSCE) for their support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.