99
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Effects of copper toxicity on growth and the uptake and translocation of metals in rice plants

&
Pages 1449-1464 | Published online: 21 Nov 2008
 

Abstract

Copper (Cu) contamination in the lower reaches of the Sado River in the Alcacer do Sal region of Portugal (a major rice producing area) has became a major pollution problem. In an attempt to study the changes in rice growth (Oryza sativa L.), the effect of excess Cu on the plasma membrane activity (as measured throughout proton extrusion) and membrane permeability as well as on the zinc (Zn), nitrogen (N), phosphorus (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), boron (B), molybdenum (Mo), and aluminum (Al) net uptake and translocation was studied. Long‐term studies (30 days) were conducted with rice subjected to increasing Cu concentrations (ranging from 0.002 to 6.25 mg/L) showed a concentration increase of Cu in root and shoot tissues. Root proton extrusion increased 7.4‐fold between the 0.01 and the 1.25 mg/L Cu treatments, whereas its membrane permeability (as measured throughout the electrolytic conductance) revealed a marked increase after the 1.25 mg/L Cu treatment. Zinc concentrations decreased with increasing Cu levels in the nutrient solution (excepting the 6.25 mg/L Cu treatment in shoots), while N, P, K, Na, Ca, Mg, B, Mo, and Al concentrations, although showing different patterns, did not reveal any correlation with increasing Cu level. The absolute content of all these metals as well as their net uptake exhibited (excepting Al) its highest values in the 0.25 mg/L Cu treatment. It is suggested that these variations, triggered by excess Cu on root growth, might be explained based on the interaction among Cu‐uptake mechanism(s), plasma membrane‐H+ ATPase and root membrane permeability. It is also suggested that Cu affects the N, P, K, Na, Ca, Mg, B, Mo, and Zn concentrations in rice shoots mainly by changing their net uptake rate.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.