45
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Adaptive attributes of tropical forage species to acid soils II. Differences in shoot and root growth responses to varying phosphorus supply and soil type

, , , &
Pages 323-352 | Published online: 21 Nov 2008
 

Abstract

Identification of plant attributes that improve the performance of tropical forage ecotypes when grown as monocultures or as grass+legume associations in low fertility acid soils will assist the development of improved forage plants and pasture management technology. The present work compared the shoot and root growth responses of four tropical forages: one grass and three legumes. The forages were grown in monoculture or in grass+legume associations at different levels of soil phosphate. Two infertile acid soils, both Oxisols, were used: one sandy loam and one clay loam. They were amended with soluble phosphate at rates ranging from 0 to 50 kg ha‐1. The forages, Brachiaria dictyoneura (grass), Arachis pintoi, Stylosanthes capitata and Centrosema acutifolium (legumes), were grown in large plastic containers (40 kg of soil per container) in the glasshouse. After 80 days of growth, shoot and root biomass production, dry matter partitioning, leaf area production, total chlorophyll content in leaves, soluble protein in leaves, root length, and proportion of legume roots in grass+legume associations were determined. The grass, grown either in monoculture or in association responded more to phosphorus supply than did the three legumes in terms of both shoot and root production. At 50 kg ha‐1 of phosphorus, the grass's yield per plant in association was greatly enhanced, compared with that of grass in monoculture. The increase in size of grass plants in association compared with that in monoculture may have been caused by reduced competition from the legumes. These differences in shoot and root growth responses to phosphorus supply in acid soils between the grass and the three legumes may have important implications for improving legume persistence in grass+legume associations.

Notes

Corresponding Author.

CIAT‐EMBRAPA‐CPAC, C.P. 70023, Planaltina, D.F., Brazil.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.