185
Views
45
CrossRef citations to date
0
Altmetric
Original Articles

Low molecular weight organic acids released from roots of durum wheat and flax into sterile nutrient solutions

, , &
Pages 753-764 | Published online: 21 Nov 2008
 

Abstract

Knowledge of the composition and quantity of organic substances released from roots of different plant species is necessary for understanding the chemical and biological processes in the rhizosphere. The present study was undertaken to quantify low molecular weight organic acids (LMWOAs) released from roots of five cultivars/lines of durum wheat (Triticum turgidum var. durum L.): Kyle, Sceptre, DT618, DT627, and DT637 and four cultivars/ lines of flax (Linum usitatissiumum L.): Somme, Flanders, AC Emerson, and YSED 2. Plants were grown in sterile nutrient solution cultures and amounts of organic acids exuded by roots were analyzed by gas chromatography. The LMWOAs varied significantly among both durum wheat and flax cultivars and oxalic, malonic, fumaric, succinic, acetic, malic, citric and tartaric acids were detected in root exudates of both species. Generally, oxalic and acetic acids were predominant in durum wheat exudates and oxalic, acetic and malic acids were predominant in flax root exudates. High oxalic acid concentrations occurred in root exudates of durum wheat cultivars DT627 and DT637, and flax cultivar YSED 2. Compared with the other durum wheat cultivars, Kyle released the lowest total amount of LMWOAs, whereas among the flax cultivars, YSED 2 had the highest total amount of acids secreted from roots. The data showed that the release of LMWOAs from roots was cultivar dependent. The results provide valuable background information for studying the role of root exudates in soil‐plant relationships.

Notes

Current address: Research Institute of Pomology and Floriculture, Pomologiczna 18, 96–100 Skierniewice, Poland.

Corresponding author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.