120
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Effect of nitrate/ammonium ratio on biomass production, nitrogen accumulation, and use efficiency in sorghums of different origin

&
Pages 813-825 | Published online: 21 Nov 2008
 

Abstract

Plant nitrogen (N) uptake, growth, and N use efficiency may be affected by N form (NO3 or NH4 +) available to the root. The objectives of this study were to determine the effect of mixed N form on dry matter production and partitioning, N uptake, and biomass N use efficiency defined as total dry matter produced per unit plant N (NUE1) in U.S. and tropical grain sorghums [Sorghum bicolor (L.) Moench]. The U.S. derived genotype CK 60 and three tropical genotypes, Malisor‐7, M 35–1, and S 34, were evaluated in a greenhouse trial using three nutrient solutions differing in their NO3 /NH4 + ratio (100/0, 75/25, 50/50). Shoot and root biomass, N accumulation, and NUE, were determined at 10‐leaf and boot stages. Averaged over all genotypes, shoot and root biomass decreased when NH4 + concentration was increased in the solution. Shoot biomass was reduced by 11% for 75/25 and 26% for 50/50 ratios, as compared to 100/0 NO3 /NH4 +. Similarly, root biomass reduction was about 34% and 45% for the same ratios, respectively. Increasing NH4 + concentration also altered biomass partitioning between shoot and root as indicated by decreasing root/shoot ratio. Total plant N content and NUE1 were also reduced by mixed N source. Marked genotypic variability was found for tolerance to higher rates of NH4 +. The tropical line M 35–1 was well adapted to either NO3 as a sole source, or to an N source containing high amounts of NH4 +. Such a characteristic may exist in some exotic lines and may be used to improve genotypes which do not do well in excessively wet soil conditions where N uptake can be reduced.

Notes

Corresponding author (e‐mail address: [email protected]).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.