95
Views
6
CrossRef citations to date
0
Altmetric
Articles

Variations in alder pollen pore numbers—a possible new correlation tool for the Neogene Kenai lowland, Alaska

Pages 180-194 | Published online: 13 Dec 2010
 

Abstract

Alder (Alnus: Betulaceae) pollen grains are common in coal beds of the Miocene Beluga and the Pliocene Sterling formations exposed in the Kenai lowland, Alaska. All alder pollen grains of the Beluga Formation and the lower part of the overlying Sterling Formation are dominated by 4-pored grains (42–67% of total alder), with no exceptions. There is a striking transition to a 5-pored dominance (32–67%) with an accompanying increase in 6-, 7-, and even 8-pored grains in outcrops of the Sterling Formation along the Cook Inlet shore, north of Clam Gulch and at the head of Kachemak Bay, in upper Swift Creek Canyon, and in two canyon tributaries to Fox Creek. The general zone of this transition includes a previously correlated volcanic ash and gives credence to the rock strata being synchronous in these widely separated outcrops. It should thus be possible to correlate these strata across the Kenai lowland by the alder pore numbers combined with the volcanic ash. The cause of the transition to a ≥ 5-pored Alnus dominance in the Pliocene of the Kenai lowland can only be suggested. Using pore numbers to determine alder species is not an accurate method because pollen of different alder species may have similar percentages of pore numbers. Nevertheless, when taking into account percentages of 5-, 6-, and 7-pored grains combined with the presence or absence of polar arci, it can be suggested that a shift occurred from the 4-pore dominated subgenus Alnus, represented by Alnus incana, to the 5-pore dominated, cold–adapted subgenus Alnobetula through dispersion and hybridization of Asian species such as Alnus maximowiczii, Alnus firma, and possibly Alnus sieboldiana. The pollen of these three species contain between 2–40% circular polar arci, which are also present in high-pore-numbered grains above the transition in this study.

Acknowledgements

I thank Estella Leopold for reviewing the manuscript, and for furnishing ideas and support on a daily basis. Tad Dillhoff made valuable comments on the contents of the manuscript, and James M. White kindly provided important and constructive suggestions. I especially want to thank Edward Berg with the Kenai National Wildlife Refuge for providing insightful observations on my research for this paper and for assisting with logistics and fieldwork. Tom Ager promptly lent an important reference slide when most needed. Brian Sherrod kindly provided the use of his personal microscope for photomicrography. James B. Riding helpfully guided the process of submitting the manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.