60
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

On the Stability of Liquid Nanodroplets in Polymerizable Miniemulsions

Pages 167-173 | Received 04 Aug 2001, Accepted 30 Sep 2001, Published online: 12 Feb 2010
 

ABSTRACT

Liquid nanodroplets within a size range of 50 to 500 nm can easily be prepared by shearing a system containing oil, water and a surfactant. The growth of the nanodroplets can effectively be suppressed by using a strong hydrophobe as an additivie to the oil and an effective surfactant. The hydrophobe acts as an osmotic agent which stabilizes the system against Ostwald ripening. The growth of the droplets by collision is controlled by the density of the surfactant layer. Freshly prepared miniemulsions are “critically stabilized” and show a slow, but pronounced growth, whereas a miniemulsion in “equilibrium” exhibits constant droplet size on longer time scales. Polymerization of the oil droplets of such miniemulsions turns out to be very promising and extends the possibilities of classical emulsion polymerization. Since each droplet can be considered a small reactor in which polymerization reactions take place, the process allows one to create new particle structures, e.g. polyaddition reactions can take advantage of unusual monomers, the incorporation of materials which are not soluble in the continuous phase, and the formation of nanocapsules.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.