72
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic Nuclear Polarization in Suspensions Consisting of Xylene Isomers and Asphaltene Extracted from MC‐800 Liquid Asphalt

, &
Pages 955-961 | Received 17 Nov 2005, Accepted 27 Nov 2005, Published online: 06 Feb 2007
 

Abstract

Overhauser effect type dynamic nuclear polarization experiments were performed to study suspensions of asphaltene in the xylene isomers (o‐, m‐, p‐) at a low magnetic field of 1.44 mT and three different temperatures (15, 25, and 35°C). The asphaltene was extracted from MC‐800 liquid asphalt. Intermolecular spin‐spin interactions occur between nuclear spins of hydrogen in the solvent medium and the free electron spins in the asphaltene micelles. The electron paramagnetic resonance spectrum of the asphaltene was obtained and the saturation experiments were applied to the samples prepared in vacuum. For all media, the dipole‐dipole interaction is predominant due to the negative signal enhancements. In all temperatures, the ultimate enhancement is the smallest for the p‐xylene solvent medium which has the lowest electrical dipole moment. The normalized low frequency relaxation components were calculated for 25°C, and the behavior of the nuclear‐electron coupling parameter according to this component is in agreement with the other works in the literature.

Acknowledgments

The authors are thankful to Tüpraş Refinery for the MC‐800 liquid asphalt.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.