1,193
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

The Influence of Polyampholytes on the Phase Behavior of Microemulsion Used as Template for the Nanoparticle Formation

, , &
Pages 155-164 | Accepted 13 Jan 2006, Published online: 06 Feb 2007
 

Abstract

A series of hydrophobically modified polyampholytes has been synthesized by the copolymerization of the cationic monomer (N,N′‐diallyl‐N,N′‐dimethylammonium chloride) and the anionic monomers maleamic acid or butylmaleamic acid, and their influence on the inverse micellar region of the quaternary system sodium dodecylsulfate/toluene‐pentanol (1:1)/water has been investigated. The polymers increase the water solubilization capacity of the microemulsion at a polymer concentration ≥5%. However, the polyampholyte‐modified inverse microemulsions show a temperature dependent behavior, by the formation at 40°C of a narrow bicontinuous channel between the L2 (w/o) and the L1 (o/w) microemulsion phases. In this case, hydrophobic interactions between the surfactant alkyl tails and the hydrophobic side chains of the copolymer play an important role, too. The reverse microemulsion droplets were used as a template for the synthesis of BaSO4 nanoparticles. The polymers, which are involved in the redispersion process, influence the size and the stability of the nanoparticles formed by preventing their aggregation. Finally, monodisperse BaSO4 nanoparticles with an average size of 5 nm, thus, can be recovered and characterized by dynamic light scattering, zeta potential measurements, and transmission electron microscopy.

The authors thank Prof. A. Laschewsky, University of Potsdam & Fraunhofer Institut für Angewandte Polymerforschung (Golm), for providing access to his synthesis laboratories and for fruitful discussions on polymer synthesis. Dr. B. Tiersch and Frau S. Rüstig,University of Potsdam, are acknowledged for the TEM and Cryo‐SEM micrographs.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.