72
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Interactions Between the Cationic Surfactants Bearing Different Polar Head Groups: Interfacial, Conductivity, NMR, and Fluorescence Studies

, , &
Pages 1262-1271 | Received 12 Sep 2006, Accepted 16 Sep 2006, Published online: 23 Dec 2010
 

Interfacial tension (γ), conductivity (κ), nuclear magnetic resonance (NMR), and fluorescence measurements have been carried out to study the mixed interfacial and micellar behavior of cationic surfactants cetyltributylphosphonium bromide (CTBB) and the cetyltrimethylammonium bromide (CTAB). From the γ versus log C s plots, the values of critical micellar concentration (cmc) and various interfacial parameters were computed. From κ measurements, the equivalent conductivities of the monomers (Λ mon), the micelles (Λ mic) states and the degree of counterion dissociation (δ) have been evaluated. The cmc values have been analyzed in the context of the pseudophase separation model and regular solution theory. The interaction parameters, βm and βσ, in the mixed micelle as well as in the mixed monolayer, respectively, also have been computed. The self‐diffusion coefficients for the micelles have been evaluated by using NMR spectroscopy. From the fluorescence quenching method, the mean micellar aggregation number (N agg) of the pure and mixed micelles has been obtained from the slope of the ratio of fluorescence intensities in the absence and in the presence of quencher (ln (I 1,0/I 1) versus [Q] plots. It was found that the incorporation of CTBB into the mixed micelle decreases the N agg. The microviscosity of the fluorescence probe Rhodamine (RB) was monitored by using fluorescence polarization measurements. The values of fluorescence anisotropies (r) indicate that the penetration of CTBB monomer into CTAB micelles produced less rigid mixed micelles.

Acknowledgments

P. S. is thankful Monbusho fellowship for the financial support for this work. P. S. also thanks JSPS for a postdoctoral award for two years. P. S. is grateful to Prof. D. E. Otzen and Dr. K. L. Larsen from Aalborg University, Aalborg, Denmark for fluorescience anisotropy and viscosity measurements: respectively.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.