857
Views
63
CrossRef citations to date
0
Altmetric
Original Articles

Quartz Crystal Microbalance Monitoring of Asphaltene Adsorption/Deposition

, &
Pages 139-146 | Received 04 Dec 2006, Accepted 06 Dec 2006, Published online: 26 Sep 2008
 

Adsorption and deposition of asphaltenes onto differently coated (hydrophilic surfaces: silica, titanium, alumina, and a noncommercial tailor‐made FeOx) quartz crystals from heptane/toluene (1∶1) and toluene solutions have been studied with the quartz crystal microbalance method with dissipation measurements (QCM‐D). The results show that the adsorbed mass is related to the solubility state of asphaltenes (aromaticity of the solvent), their origin (aggregate size in solution) and very little to the hydrophilicity of the investigated crystal. Adsorption/deposition of asphaltenes depends on their solubility. We found two cases: Either the asphaltenes are solubilized, or the asphaltenes are partly solubilized and partly precipitated. In the former case, asphaltenes are bounded very tightly to the surface and poorly for the latter. The change in solution composition due to decrease in asphaltene solvency causes formation of a variety of asphaltenes species. The results also were compared and discussed in relation to adsorption onto particles, determined with the UV depletion method. The study shows that QCM‐D method is a very useful tool to study the mechanisms and the effects of solvency of asphaltenes. We discuss and compare the different techniques.

We gratefully acknowledge the members of the joint industrial programs: “Particle‐stabilized emulsions/Heavy crude oils” and “Treatment of Produced Water”, and their industrial sponsors for financial support. The authors thank Dr. Sébastien Simon and Dr. Gisle Øye for careful reading the manuscript and many useful comments.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.