90
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Oleic Acid and Electrolyte on the Interfacial Dilational Properties of Surfactant/Polymer Systems at the Decane-Water Interface

Pages 1658-1666 | Received 15 Jun 2009, Accepted 16 Aug 2009, Published online: 19 Nov 2010
 

Abstract

The dilational properties of partly hydrolyzed polyacrylamide (HPAM) and 4,5-diheptyl-2-propylbenzene sulfonate (377) mixed systems in the absence or presence of electrolyte or oleic acid at the oil-water interface have been described by means of the oscillating barriers method and the interfacial tension relaxation method. The polymer plays different roles in influencing the nature of polymer-surfactant adsorbed layers at different surfactant concentrations. At low surfactant concentration, the addition of polymer perhaps weakens the “entanglement” of long alkyl chains, which decreases strikingly the dilational modulus of the adsorbed layer. At high surfactant concentration, the addition of the polymer increases the dilational modulus due to the hydrophobic interactions between polymer and surfactant molecules. On the case of adding electrolyte, the frequency dependence of dilational modulus increases due to the enhancement of exchange process of surfactant molecules and bivalent cation has more obvious effect than Na ion. Oleic acid plays dual roles in controlling interfacial dilational properties of mixed adsorption films: a small quantity of oleic acid increases the dilational modulus by forming densely packed mixed adsorption layer with surfactant molecules, while the superfluous addition of oleic acid could decrease the dilational modulus mainly due to the weakening of the “entanglement” among long alkyl chains in surfactant molecules.

Notes

The work was financially supported by the National Science & Technology Major Project (2008ZX05011) and 863 Project (2008AA092801) of China.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.