232
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Temperature Dependence in the Synthesis of SBA-16-Type Mesoporous Silica with Pluronic F68 Block Copolymer

, &
Pages 28-34 | Received 13 Aug 2009, Accepted 10 Sep 2009, Published online: 20 Dec 2010
 

Abstract

By adjusting the local effective surfactant packing parameter through synthesis temperature, highly ordered SBA-16-type mesoporous silica materials have been synthesized by templating with a nonionic triblock copolymer Pluronic F68 in strongly acidic conditions at temperature 30∼40°C with the addition of K2SO4. The prepared SBA-16-type mesoporous silica materials having Im3m cubic mesostructure were proved by the well-defined x-ray diffraction patterns combined with transmission electron microscopy. Scanning electron microscopy indicated that a transformation from faced-sphere to faced-polyhedron shape morphologies could be induced with increasing of the synthesis temperature. The nitrogen adsorption–desorption analysis revealed that the mean pore size (5.50∼6.13 nm) of the prepared materials increased with increasing synthesis temperature. However, when the synthesis temperature exceeded 46°C, only disordered mesoporous silca was obtained. Our synthesis strategies by adjusting the local effective surfactant packing parameter through synthesis condition, even in a narrow range, would be used not only to optimize the synthesis conditions of reported mesoporous silca, but also to fabricate new mesoporous silica materials with well-ordered channel and anticipated morphologies.

Acknowledgments

This work was financially supported by the Scientific Research Foundation of Tianjin Science and Technology University (No.: 20070444).

Notes

*Reactant at 30°C for 24 hours and then performed at 35°C for another 24 hours in mother solutions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.