450
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Simulation of Pressure-Swirl Spray Dispersion by Using Eulerian-Lagrangian Method

, , &
Pages 47-55 | Received 26 Aug 2009, Accepted 02 Oct 2009, Published online: 20 Dec 2010
 

Abstract

To gain a general understanding of atomization and sheet breakup processes, the interaction of pressure-swirl hollow-cone sprays and a quiescent medium was investigated computationally. The spray characteristics of Iso-octane (n-C8H18) with high pressure-swirl injector in the ambient conditions are modeled. The Linearized Instability Sheet Atomization (LISA) model has been used to describe the primary breakup processes of the spray. Sauter Mean Diameter, sheet thickness and exit velocity were computed as the results of primary breakup. Disintegration of large drops is simulated using Taylor analogy breakup (TAB) model in which the Rosin-Rammler distribution is used. Evaporation and collision models are deactivated in this study. The model considers the transient behavior of the pre-spray and steady-state behavior of the main spray for three various injection pressures and liquid mass flow rates. Qualitative and quantitative comparisons between the simulated and experimentally measured results were made. The numerical simulations can successfully demonstrate the spray characteristics, such as spray tip penetration, drop sizes and overall spray structure.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.