316
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Visible Light Photocatalytic Activity of Porphyrin Tin(IV) Sensitized TiO2 Nanoparticles for the Degradation of 4-Nitrophenol and Methyl Orange

, , , &
Pages 943-947 | Received 24 Dec 2009, Accepted 08 Apr 2010, Published online: 27 Jun 2011
 

Abstract

A stable metalloporphyrin sensitized TiO2 (Degussa P25) photocatalyst was prepared by using trans-dihydroxo[5,10,15,20-tetraphenylporphyrin]tin(IV) (SnP) as a sensitizer in a simple impregnation process. The solid diffuse reflectance ultraviolet-visible (UV-vis) spectrum of the SnP sensitized TiO2 photocatalyst (SnP-TiO2) indicated that there existed interaction between SnP and TiO2. It was found that SnP-TiO2 exhibited an enhanced visible light photocatalytic activity as compared with that over P25 for the degradation of 4-nitrophenol (4-NP) and methyl orange (MO) in aqueous solutions. The mechanism exploration showed that the degradation of MO and 4-NP experienced two different ways, that is, MO was photodegraded by reactive oxygen species and 4-NP was directly photodegraded by the excited state of SnP. Furthermore, it was found that the loading content of SnP had an important influence on the photocatalytic activity of TiO2. The maximum photocatalytic efficiency was achieved when the contents of SnP were 25 mg and 30 mg per gram TiO2 for MO and 4-NP, respectively. Importantly, SnP-TiO2 was particularly stable and the photocatalytic activity was hardly decreased after being recycled seven times in the presence of oxygen, which could be attributed to the easy reductive regeneration of SnP.

Acknowledgements

This research was financially supported by National High Technology Research and Development Program of China (No. 2009AA05Z101).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.