264
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Adsorptive Removal of Thorium(IV) from Aqueous Solutions Using Synthesized Polyamidoxime Chelating Resin: Equilibrium, Kinetic, and Thermodynamic Studies

, , &
Pages 501-509 | Received 10 Apr 2013, Accepted 15 Apr 2013, Published online: 28 Mar 2014
 

Abstract

In this study, an amidoximated chelating ion exchange resin was prepared by poly-acrylonitrile (PAN) grafted potato starch. The adsorbent characterizations such as specific surface area, pore volume, average pore radius, and Fourier transform infrared (FTIR) spectrum of the resin were measured. The effects of pH, adsorbent dosage, contact time, initial concentration of thorium ion, and temperature on adsorption of thorium ion from aqueous solutions were investigated. Four isotherm models including Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin were applied to analyze the equilibrium isotherm data. The results showed that Langmuir and Temkin models had a good agreement with experimental data. The maximum capacity of the adsorbent using the Langmuir isotherm model was 227.27 mg · g−1. The kinetic models like pseudo-first-order, pseudo-second-order, Elovich, and intraparticle were examined to describe the adsorption process. The kinetics of the adsorption process was found to follow the pseudo-second-order kinetic model. The thermodynamic parameters (ΔG°, ΔH°, ΔS°) were also calculated using equilibrium constant values at various temperatures (25, 35, 45, 55°C) and the positive value for ΔH° showed an endothermic adsorption process. The study suggests that the prepared adsorbent has promising potential for the removal of thorium from wastewaters.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.