335
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Sulfobutylated Lignosulfonate with Ultrahigh Sulfonation Degree and Its Dispersion Property in Low-Rank Coal-Water Slurry

, , , , &
Pages 472-478 | Received 06 Feb 2015, Accepted 20 Feb 2015, Published online: 14 Dec 2015
 

Abstract

Using a simple method, we developed a new family of alkyl sulfonic acid modified lignosulfonate (ASLSs) with simultaneously improved sulfonation degrees and molecular weights via one step. Direct sulfonation occurred on both phenolic and alcoholic hydroxyl groups of alkali lignin raw material with 1,4-butylenesulfone used as sulfonation agent. A sulfonation degree of 3.86 mmol/g had been achieved which presents as one of the highest sulfonation degrees among those of reported LSs, to date. 1H-NMR and Fourier transform infrared spectroscopy measurements confirmed the efficient sulfonation. Furthermore, the dispersion properties were investigated in low-rank coal-water slurry (CWS). ASLS3 showed better viscosity-reduction effect than naphthalene sulfonate formaldehyde condensate (FDN) in CWS with dosages from 0.6% to 1.0 wt%. ASLS3 had the similar sulfonation degree with FDN; however, the large steric hindrance, soft long alkyl chain-C4H8-SO3H, and their efficient anchoring effect of ASLSs contributed to their improved dispersion properties.

GRAPHICAL ABSTRACT

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.